Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464327

RESUMO

Objectives: Immunocompromised individuals are susceptible to severe COVID-19 and potentially contribute to the emergence of variants with altered pathogenicity due to persistent infection. This study investigated the impact of immunosuppression on SARS-CoV-2 infection in k18-hACE2 mice and the effectiveness of antiviral treatments in this context. Methods: Mice were immunosuppressed using cyclophosphamide and infected with a B lineage of SARS-CoV-2. Molnupiravir and nirmatrelvir, alone and in combination, were administered and viral load and viral sequence diversity was assessed. Results: Treatment of infected but immune compromised mice with both compounds either singly or in combination resulted in decreased viral loads and pathological changes compared to untreated animals. Treatment also abrogated infection of neuronal tissue. However, no consistent changes in the viral consensus sequence were observed, except for the emergence of the S:H655Y mutation. Molnupiravir, but not nirmatrelvir or immunosuppression alone, increased the transition/transversion (Ts/Tv) ratio, representative of A>G and C>U mutations and this increase was not altered by the co-administration of nirmatrelvir with molnupiravir.Notably, immunosuppression itself did not appear to promote the emergence of mutational characteristic of variants of concern (VOCs). Conclusions: Further investigations are warranted to fully understand the role of immunocompromised individuals in VOC development and to inform optimised public health strategies. It is more likely that immunodeficiency promotes viral persistence but does not necessarily lead to substantial consensus-level changes in the absence of antiviral selection pressure. Consistent with mechanisms of action, molnupiravir showed a stronger mutagenic effect than nirmatrelvir in this model.

2.
iScience ; 27(1): 108763, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38261926

RESUMO

Respiratory syncytial virus (RSV) is a global healthcare problem, causing respiratory illness in young children and elderly individuals. Our knowledge of the host pathways that define susceptibility to infection and disease severity are limited. Hypoxia inducible factors (HIFs) define metabolic responses to low oxygen and regulate inflammatory responses in the lower respiratory tract. We demonstrate a role for HIFs to suppress RSV entry and RNA replication. We show that hypoxia and HIF prolyl-hydroxylase inhibitors reduce the expression of the RSV entry receptor nucleolin and inhibit viral cell-cell fusion. We identify a HIF regulated microRNA, miR-494, that regulates nucleolin expression. In RSV-infected mice, treatment with the clinically approved HIF prolyl-hydroxylase inhibitor, Daprodustat, reduced the level of infectious virus and infiltrating monocytes and neutrophils in the lung. This study highlights a role for HIF-signalling to limit multiple aspects of RSV infection and associated inflammation and informs future therapeutic approaches for this respiratory pathogen.

3.
Viruses ; 15(8)2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37631979

RESUMO

The respiratory system is the main target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 19 (COVID-19) where acute respiratory distress syndrome is considered the leading cause of death. Changes in pulmonary blood vessels, among which an endothelialitis/endotheliitis has been particularly emphasized, have been suggested to play a central role in the development of acute lung injury. Similar vascular changes are also observed in animal models of COVID-19. The present study aimed to determine whether the latter are specific for SARS-CoV-2 infection, investigating the vascular response in the lungs of mice infected with SARS-CoV-2 and other respiratory viruses (influenza A and murine gammaherpesvirus) by in situ approaches (histology, immunohistology, morphometry) combined with RNA sequencing and bioinformatic analysis. Non-selective recruitment of monocytes and T and B cells from larger muscular veins and arteries was observed with all viruses, matched by a comparable transcriptional response. There was no evidence of endothelial cell infection in any of the models. Both the morphological investigation and the transcriptomics approach support the interpretation that the lung vasculature in mice mounts a stereotypic response to alveolar and respiratory epithelial damage. This may have implications for the treatment and management of respiratory disease in humans.


Assuntos
COVID-19 , Sistema Cardiovascular , Gammaherpesvirinae , Influenza Humana , Humanos , Animais , Camundongos , SARS-CoV-2 , Modelos Animais de Doenças
4.
Nat Commun ; 14(1): 3583, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328472

RESUMO

COVID-19 has stimulated the rapid development of new antibody and small molecule therapeutics to inhibit SARS-CoV-2 infection. Here we describe a third antiviral modality that combines the drug-like advantages of both. Bicycles are entropically constrained peptides stabilized by a central chemical scaffold into a bi-cyclic structure. Rapid screening of diverse bacteriophage libraries against SARS-CoV-2 Spike yielded unique Bicycle binders across the entire protein. Exploiting Bicycles' inherent chemical combinability, we converted early micromolar hits into nanomolar viral inhibitors through simple multimerization. We also show how combining Bicycles against different epitopes into a single biparatopic agent allows Spike from diverse variants of concern (VoC) to be targeted (Alpha, Beta, Delta and Omicron). Finally, we demonstrate in both male hACE2-transgenic mice and Syrian golden hamsters that both multimerized and biparatopic Bicycles reduce viraemia and prevent host inflammation. These results introduce Bicycles as a potential antiviral modality to tackle new and rapidly evolving viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Masculino , Animais , Cricetinae , Camundongos , Antivirais/farmacologia , Peptídeos/farmacologia , Anticorpos , Mesocricetus , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus/genética
5.
Sci Rep ; 12(1): 19931, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402908

RESUMO

Numerous bottom current-controlled depositional and erosional features, which together form Contourite Depositional Systems (CDS), have been recognized in deep-water settings over the past decade. Most of these systems are described based on two-dimensional (2D) seismic data, whereas only a few CDS have been characterised from high-resolution 3D data. Here we document a newly identified CDS that formed during the Paleocene within the Morondava Basin, offshore west Madagascar, through analysis of a depth-migrated 3D seismic survey, enhanced by the implementation of seismic attributes. Three seismic units (SU) mark the main evolutionary stages of the CDS: (a) the onset (SU1), (b) drift growth (SU2), and (c) burial (SU3) stages. The growth stage documents lateral upslope migration of a mounded drift and its associated moat. The increasing, long-term influence of bottom currents along the foot of the slope occurred simultaneously with plate tectonic, climatic and oceanographic changes. Evidence amassed from the CDS highly erosive bounding discontinuities, internal discontinuities, and moat architecture all indicate the intermittent behaviour of the currents over shorter time frames during its formation. Drift deposits form under the influence of weaker currents, while discontinuities appear to record the most vigorous currents, producing the large-scale morphology of the system.


Assuntos
Meio Ambiente , Madagáscar
6.
Viruses ; 14(5)2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35632761

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) not only affects the respiratory tract but also causes neurological symptoms such as loss of smell and taste, headache, fatigue or severe cerebrovascular complications. Using transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2), we investigated the spatiotemporal distribution and pathomorphological features in the CNS following intranasal infection with SARS-CoV-2 variants, as well as after prior influenza A virus infection. Apart from Omicron, we found all variants to frequently spread to and within the CNS. Infection was restricted to neurons and appeared to spread from the olfactory bulb mainly in basally oriented regions in the brain and into the spinal cord, independent of ACE2 expression and without evidence of neuronal cell death, axonal damage or demyelination. However, microglial activation, microgliosis and a mild macrophage and T cell dominated inflammatory response was consistently observed, accompanied by apoptotic death of endothelial, microglial and immune cells, without their apparent infection. Microgliosis and immune cell apoptosis indicate a potential role of microglia for pathogenesis and viral effect in COVID-19 and the possible impairment of neurological functions, especially in long COVID. These data may also be informative for the selection of therapeutic candidates and broadly support the investigation of agents with adequate penetration into relevant regions of the CNS.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Sistema Nervoso Central , Tropismo Viral , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/complicações , Sistema Nervoso Central/fisiopatologia , Sistema Nervoso Central/virologia , Humanos , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética , Síndrome Pós-COVID-19 Aguda
7.
Sci Rep ; 11(1): 20291, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645920

RESUMO

Contourite features are increasingly identified in seismic data, but the mechanisms controlling their evolution remain poorly understood. Using 2D multichannel reflection seismic and well data, this study describes large Oligocene- to middle Miocene-aged sedimentary bodies that show prominent lateral migration along the base of the Argentine slope. These form part of a contourite depositional system with four morphological elements: a plastered drift, a contourite channel, an asymmetric mounded drift, and an erosive surface. The features appear within four seismic units (SU1-SU4) bounded by discontinuities. Their sedimentary stacking patterns indicate three evolutionary stages: an onset stage (I) (~ 34-25 Ma), a growth stage (II) (~ 25-14 Ma), and (III) a burial stage (< 14 Ma). The system reveals that lateral migration of large sedimentary bodies is not only confined to shallow or littoral marine environments and demonstrates how bottom currents and secondary oceanographic processes influence contourite morphologies. Two cores of a single water mass, in this case, the Antarctic Bottom Water and its upper interface, may drive upslope migration of asymmetric mounded drifts. Seismic images also show evidence of recirculating bottom currents which have modulated the system's evolution. Elucidation of these novel processes will enhance basin analysis and palaeoceanographic reconstructions.

8.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32778549

RESUMO

Enterobacteriaceae that produce metallo-ß-lactamases (MBLs) are an emerging threat to public health. The metallo-ß-lactamase inhibitor (MBLi) ANT2681 inhibits the enzymatic activity of MBLs through interaction with the dinuclear zinc ion cluster present in the active site that is common to these enzymes. ANT2681 is being codeveloped, with meropenem as the partner ß-lactam, as a novel combination therapy for infections caused by MBL-producing bacteria. The pharmacokinetics/pharmacodynamics of meropenem-ANT2681 were studied in a murine neutropenic thigh model of NDM-producing Enterobacteriaceae Dose-ranging studies were performed with both meropenem and ANT2681. Dose fractionation experiments were performed to identify the relevant pharmacodynamic index of ANT2681 when coadministered with meropenem. A background of meropenem at 50 mg/kg of body weight every 4 h (q4h) subcutaneously (s.c.) had minimal antibacterial effect. On this background, half-maximal effect was observed with an ANT2681 dose of 89 mg/kg q4h intravenously (i.v.). The dose fractionation study showed that area under the concentration-time curve (AUC) was the relevant pharmacodynamic index for the inhibitor. The magnitude of the meropenem-ANT2681 exposure required to achieve stasis was explored using 5 NDM-producing strains. A 3-dimensional surface fitted to the pharmacodynamic data from the 5 strains suggested that stasis was achieved with an fT > potentiated meropenem MIC of 40% and ANT2681 AUC of 700 mg · h/liter. These data and analyses provide the underpinning evidence for the combined use of meropenem and ANT2681 for clinical infections.


Assuntos
Infecções por Enterobacteriaceae , Inibidores de beta-Lactamases , Animais , Antibacterianos/farmacologia , Enterobacteriaceae , Infecções por Enterobacteriaceae/tratamento farmacológico , Meropeném/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Monobactamas , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases
9.
J Emerg Manag ; 13(3): 201-16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26150364

RESUMO

UNLABELLED: Active shooting violence at confined settings, such as educational institutions, poses serious security concerns to public safety. In studying the effects of active shooter scenarios, the common denominator associated with all events, regardless of reason/intent for shooter motives, or type of weapons used, was the location chosen and time expended between the beginning of the event and its culmination. This in turn directly correlates to number of casualties incurred in any given event. The longer the event protracts, the more casualties are incurred until law enforcement or another barrier can react and culminate the situation. OBJECTIVE: Using AnyLogic technology, devise modeling scenarios to test multiple hypotheses against free-agent modeling simulation to determine the best method to reduce casualties associated with active shooter scenarios. DESIGN, SETTING, SUBJECTS: Test four possible scenarios of responding to active shooter in a public school setting using agent-based computer modeling techniques-scenario 1: basic scenario where no access control or any type of security is used within the school; scenario 2, scenario assumes that concealed carry individual(s) (5-10 percent of the work force) are present in the school; scenario 3, scenario assumes that the school has assigned resource officer; scenario 4, scenario assumes that the school has assigned resource officer and concealed carry individual(s) (5-10 percent) present in the school. MAIN OUTCOMES MEASURED: Statistical data from modeling scenarios indicating which tested hypothesis resulted in fewer casualties and quicker culmination of event. RESULTS: The use of AnyLogic proved the initial hypothesis that a decrease on response time to an active shooter scenario directly reduced victim casualties. CONCLUSIONS: Modeling tests show statistically significant fewer casualties in scenarios where on scene armed responders such as resource officers and concealed carry personnel were present.


Assuntos
Aplicação da Lei/métodos , Técnicas de Planejamento , Gestão da Segurança/organização & administração , Violência/prevenção & controle , Simulação por Computador , Armas de Fogo , Humanos , Violência/legislação & jurisprudência
10.
J Emerg Manag ; 12(3): 197-210, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25062820

RESUMO

When developing response plans in the aftermath of a catastrophic incident, jurisdictions often fail to conduct the necessary interdisciplinary planning needed to fully address the needs across jurisdictional borders. The Purdue Homeland Security Institute (PHSI) was selected by the City of Chicago Office of Emergency Management and Communications (OEMC) in 2010 to lead an effort to address planning across jurisdictional borders during mass evacuations following a catastrophic incident. Specifically, PHSI was chosen to lead the effort in developing a planning and implementation guide for standing up a conceptual Regional Hub Reception Center (RHRC). A major component within the mass evacuation and sheltering continuum, the RHRC is designed to provide evacuees with quickresponse mass care and emergency assistance while their other needs are assessed and appropriate shelter locations are identified. The RHRC also provides a central location to leverage governmental, nongovernmental, and private sector resources and is the first point in the evacuation, mass care, and sheltering concept of operations where more comprehensive support (food, shelter, medical, psychological, household pet sheltering, reunification, etc) can be expected. PHSI undertook this lead role working within the Illinois-Indiana-Wisconsin (IL-IN-WI) Combined Statistical Area (CSA) as part of the US Department of Homeland Security Regional Catastrophic Planning Grant Program. Coordinating closely with the City of Chicago OEMC and IL-IN-WI CSA Regional Catastrophic Planning Team, PHSI lead the research effort using resource and capability data compiled from all 17 jurisdictions within the IL-IN-WI CSA and validated the RHRC concept using three tabletop exercises. Upon completion, the PHSI team published the RHRC planning guide complete with procedures and processes that define the roles and responsibilities of government, nongovernment organizations, and private sector for providing RHRC mass care functions and RHRC capability and capacity assessments. This article further examines the potential for using simulation modeling as a cost-effective means to rapidly evaluate any facility for potential use as a RHRC and to measure and maximize RHRC operational efficiency. Using AnyLogic simulation software, PHSI developed a first-ever model of a theoretical RHRC capable of simulating, measuring, and manipulating RHRC operations under specified conditions/scenarios determined by the emergency management planner. Future simulation modeling research promises to promote the Whole Community Approach to response and recovery by reinforcing interdisciplinary planning, enhancing regional situational awareness, and improving overall jurisdictional coordination and synchronization.


Assuntos
Comportamento Cooperativo , Planejamento em Desastres , Serviços Médicos de Emergência/organização & administração , Incidentes com Feridos em Massa , Modelos Organizacionais , Humanos , Illinois , Indiana , Determinação de Necessidades de Cuidados de Saúde , Estados Unidos , United States Department of Homeland Security , Wisconsin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...